DUAL 4-BIT ADDRESSABLE LATCH

DUAL 4-BIT ADDRESSABLE LATCH

FAST ${ }^{\text {™ }}$ SCHOTTKY TTL
In the memory mode, all latches remain in their previous states and are unaffected by the Data or Address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held HIGH (inactive) while the address lines are changing. In the dual 1-of-4 decoding or demultiplexing mode ($\overline{\mathrm{MR}}=\overline{\mathrm{E}}=\mathrm{LOW}$), addressed outputs will follow the level of the D inputs with all other outputs LOW. In the clear mode, all outputs are LOW and uneffected by the Address and Data inputs.

- Combines Dual Demultiplexer and 8-Bit Latch
- Serial-to-Parallel Capability
- Output from Each Storage Bit Available
- Random (Addressable) Data Entry
- Easily Expandable
- Common Clear Input
- Useful as Dual 1-of-4 Active HIGH Decoder

CONNECTION DIAGRAM

FUNCTION TABLE

Operating Mode	Inputs					Outputs			
	$\overline{M R}$	E	D	A_{0}	A_{1}	Q_{0}	Q1	Q_{2}	Q3
Master Reset	L	H	X	X	X	L	L	L	L
Demultiplex (Active HIGH Decoder when $\mathrm{D}=\mathrm{H})$	L L L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & d \\ & d \\ & d \\ & d \end{aligned}$	L H L H	L L H H	Q $=$ d L L L L	L Q $=$ d L L	L L $Q=d$ L	L L L $Q=d$
Store (Do Nothing)	H	H	X	X	X	90	q_{1}	q2	93
Addressable Latch	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	d d d d	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	L L H H	$\begin{gathered} \mathrm{Q}=\mathrm{d} \\ \mathrm{q0} \\ \text { 90 } \\ \text { 90 } \end{gathered}$	$\begin{gathered} \mathrm{q}_{1} \\ \mathrm{Q}=\mathrm{d} \\ \mathrm{q}_{1} \\ \mathrm{q}_{1} \end{gathered}$	$\begin{gathered} \mathrm{q}_{2} \\ \mathrm{q}_{2} \\ \mathrm{Q}=\mathrm{d} \\ \mathrm{q}_{2} \end{gathered}$	$\begin{gathered} \mathrm{q}_{3} \\ \text { 93 } \\ \text { q3 } \\ \mathrm{Q}=\mathrm{d} \end{gathered}$

[^0]
MC54/74F256

LOGIC DIAGRAM

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54,74	4.5	5.0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54,74			-1.0	mA
IOL	Output Current - Low	54,74			20	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage	
V_{IK}	Input Clamp Diode Voltage				-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$	
VOH	Output HIGH Voltage	54, 74	2.5			V	$\mathrm{IOL}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
		74	2.7			V	$\mathrm{OL}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage				0.5	V	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
${ }^{\prime \prime} \mathrm{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
					0.1	mA	$V_{C C}=$ MAX, $\mathrm{V}_{\text {I }}$	$=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	
Ios	Output Short Circuit Current (Note 2)		-60		-150	mA	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	
Icc	Power Supply Current Total, Output HIGH Total, Output LOW				42	mA	$V_{C C}=$ MAX	
					60	mA	$V_{C C}=\mathrm{MAX}$	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. 2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

Symbol	Parameter	54/74F		54F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
tpLH tpHL	Propagation Delay \bar{E} to Q_{n}	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 13 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 7.5 \end{aligned}$	ns
tpLH tpHL	Propagation Delay $D_{n} \text { to } Q_{n}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 7.5 \end{aligned}$	ns
tpLH tPHL	Propagation Delay $A_{n} \text { to } Q_{n}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 15.5 \\ 11 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 10 \end{gathered}$	ns
tPHL	Propagation Delay $\overline{M R}$ to Q_{n}	5.0	9.0	4.5	11.5	4.5	10	ns

AC OPERATING REQUIREMENTS

Symbol	Parameter	54/74F		54F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 5 \% \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW D_{n} to $\overline{\mathrm{E}}$	$\begin{aligned} & \hline 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns
$\begin{array}{\|l\|} \hline \operatorname{th}^{\prime}(\mathrm{H}) \\ \mathrm{th}^{(L)}(\mathrm{L} \end{array}$	Hold Time, HIGH or LOW D_{n} to $\overline{\mathrm{E}}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW A to $\bar{E}(a)$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & \operatorname{th}(\mathrm{H}) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$	Hold Time HIGH or LOW A to $\bar{E}(b)$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		0		0		ns
tW	E Pulse Width	4.0		4.0		4.0		ns
tw	$\overline{\text { MR Pulse Width }}$	4.0		4.0		4.0		ns

NOTES:

1. The Address to Enable setup time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
2. The Address to Enable hold time is the time after the LOW-to-HIGH Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

[^0]: H = HIGH Voltage Level Steady State
 L = LOW Voltage Level Steady State
 X = Immaterial
 $d=$ HIGH or LOW Data one setup time prior to the LOW-to-HIGH Enable transition.
 $\mathrm{q}=$ Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.

